
So�ware Development (cs2500)

Lecture 21: Fixing Bugs with JUnit Tests

M.R.C. van Dongen

November 19, 2010

Contents
1 Introduction 1

2 Assertions 1

3 What is Unit Testing? 2

4 Why Unit Testing? 2

5 Concrete Unit Tests 3
5.1 Are the Results RIGHT? . 4

5.2 Boundary Conditions . 4

5.3 Inverse Relationships . 5

5.4 Cross-checking . 6

6 First JUnit Tests 6

7 JUnit Assertions 8

8 Test Wrappers 9

9 Class Wrappers 10

10 Tests with Timeout 12

11 Acknowledgements 13

12 For Monday 13

1

1 Introduction
�is lecture is about unit testing with JUnit4, which is a Java framework that allows you to write simple

tests to test your methods in isolation. �e material from this lecture about JUnit4 is not examinable

for the written examination. However, there may be a question about unit testing in general. Also there

may be an assignment about JUnit4 testing. �is lecture is mainly based on [Furguson Smart, 2008,

Chapter 10], [Hunt and �omas, 2007], and [Sommerville, 2007, Chapter 23]. More information about

JUnit testing may be found on http://en.wikipedia.org/wiki/Unit_test.

2 Assertions
Before studying unit testing with Java’s JUnit4 framework, it is useful to study Java’s assertionmechanism,

which is another way to locate errors in the logic of your programs. You add assertions to your program

using Java’s assert method:

public class TestAssert {
public static void main(String[] args) {

int value = 1;
assert(value == 1);
value = 2; // Simulate error.
assert(value == 1);
System.out.println("value = " + value);

}
}

Java

An assertion should state a condition which should be true.

A�er stating your assertions, you compile your sources as per usual. However, when running your

program, you can enable assertion checking by adding the ‘-ea’ �ag. �is forces java to check the

assertions and throw an error for a failed assertions.

$ java -ea TestAssert
Exception in thread "main" java.lang.AssertionError

at TestAssert.main(TestAssert.java:6)
$

Unix Session

By default, assertion checking is o�, so running java without -ea “turns” assertion checking o�.

$ java TestAssert
value = 2
$

Unix Session

�e following are some advantages and disadvantages of assertions:

• Assertions are an easy mechanism to integrate tests and code.

• It is easy to turn tests on and o�.

2

http://en.wikipedia.org/wiki/Unit_test

• Assertions in programs provide a form of documentation. Speci�cally, they state conditions which

should be true.

• Assertions provide an easy mechanism for integrated testing (testing as part of the whole applica-

tion).

• However, assertions do not allow you to test your individual methods in isolation.

3 What is Unit Testing?
A unit (component) is the smallest testable part of an application. A unit test is a test that veri�es the

individual units of your application are working properly. Unit testing is also known as component testing.

Many companies have special test engineers that test so�ware written by so�eware developers. Unit tests

are written by the so�ware developers themselves.

�e goal of unit testing is to show that the individual units are correct. Unit testing is done right

from the early stage of development.

4 Why Unit Testing?
Unit testing has the following advantages.

Defect testing: Unit testing is a defect testing process: its goal is to expose faults in the components.

Before you read on, make sure you understand this. Writing tests that succeed regardless of errors

doesn’t help: the tests must be designed to break your code.

Provides con�dence: Tests eliminate uncertainty about the units.

Automates testing: Unit tests can be automated.

Regression testing: It supports regression testing, which is a form of testing which insists on (1) repeating

all previous tests, (2) repeating all new tests, and on (3) making sure all tests past.

Robustness to changes: Tests remain valid a�er changes to the code of the unit.

Simpli�es integration: Bugs are eliminated at an earlier stage. �is saves much time. For example,

chasing bugs when you’re integrating several classes is easier if each of the classes are bug free. If the

classes aren’t bug free then it may be di�cult to determine what is causing unexpected behaviour.

�e trade-o� is not “test now” versus “test later” but “linear increase in testing and coding e�ort

now” versus “exponential testing e�ort later.”

Documentation: Unit tests provide a form of documentation of the unit api.

Contract: �e tests provide a written contract which the unit must satisfy (this is related to the previous

item).

3

Drives design: Writing a unit test before writing the unit may drive the design of the unit. For example,

the test documents (some) of the intended behaviour of the unit, which may be used in addition

to a formal speci�cation of method behaviour.

Separates testing: Unit tests allow testing of your methods in isolation from other classes. �is allows

more thorough tests.

5 Concrete Unit Tests
�is section provides some concrete suggestions for unit tests. Your “RIGHT-BICEP” may be the key

to successful unit testing.

RIGHT results: Are the results right?

Boundary conditions: Are the boundary conditions correct?

Inverse relationships: Can you check inverse relationships?

Cross-checking: Can you cross-checks results using di�erent means?

Error conditions: Can you force error-conditions to happen?

Performance: Are the performance characteristics within bound?

5.1 Are the Results RIGHT?
�ese are simple tests to verify if the results are correct. Given the input these tests should be able to

decide what would be the right result.

• Given numbers 2, 4, and 1: which is the larger?

• Given numbers 45, and 2345: which is the larger?

• Given number 1, what is the absolute value?

• Given number -4, what is the absolute value?

5.2 Boundary Conditions
Many bugs are caused by range or boundary errors:

Range: �is class of errors are related to the allowed values in “a general way”. For example:

• Wrong �le extension.

• Bogus input: surname is cw4vr@:.

• Missing values in array declarations.

4

• Unreasonable input: a 10000 years old person.

• Ordered lists aren’t sorted.

• Negative/positive numbers.

• Sequencing errors.

Boundary conditions: �ese errors are caused by exceptional values or forgotten values at the start or

end of a range.

• Fence-post problems.

• Other o�-by one errors.

• Empty lists.

• Division by zero.

When checking boundary conditions, it helps to check if they are CORRECT:

Conformance: Does the value conform to an expected format?

Ordering: Are the values correctly ordered? Should the result be independent of the ordering?

Range: Is the value within reasonable minimum and maximum values?

Reference: Are there references to objects in other classes? If yes, are the conditions for referencing

them right?

Existence: Is the value non-zero, is it present in a set, …? Is the string non-empty? Is the reference

non-null?

Cardinality: Is the number of things correct? Are there o�-by-one errors?

Time: Are things happening at the right time, in the right order?

5.3 Inverse Relationships
Some results can be cross-checked using inverse relationships. For example:

• x =
p

x2
, provided x is non-negative.

• x =−(−x).

• x = (2x)/2.

5

Inverse relationships are ideal for creating unit tests. For example, if you have to implement a method

that computes f (x), where f (·) is some given function. Furthermore, let’s assume that you know how to

compute an inverse of f −1(x) for certain allowed values x . Given this background you can assert that

x = f −1 (f (x)) should hold, for one or several allowed x . Furthermore, you can assert that f
�

f −1(x)
�

for allowed x .

Inverse relationships are also excellent relationships for tests with pseudo-random data in for-loop.

Testing other relationships may also provide con�dence. For example:

• �ere may be recurrence relations: fn+2 = fn+1+ fn , m!= (m− 1)!×m, …. Such recurrence

relations are ideal. For example, let’s assume you’ve implemented a method fibonacci which

satis�es the �rst recurrence relations. You can simply plug in your “method calls” into the recurrence

relation.

for (int n = 0; n <= MAX_N; n++) {
int fib2 = fibonacci(n + 2);
int fib1 = fibonacci(n + 1);
int fib0 = fibonacci(n + 0);
assertTrue(fib2 == fib1 + fib0);

}

Java

• Solutions may be known given certain boundary conditions. For example:

– You may know the answer if the input is even.

for (int n = -MAX_N; n <= MAX_N; n++) {
int newAnswer = myNewMethod(2 * n);
int evenAnswer = myAnswerForEvenNumbers(2 * n);
assertTrue(newAnswer == evenAnswer);

}

Java

– You may know the answer if the input is a power of 2.

– …

• ….

5.4 Cross-checking
Can you cross-check results using other means?

• Do you know a less e�cient way to compute the result? For example,

– For example, you have to compute f (n) =
∑n

i=0 i .

– You implement a clever way to compute it: f (n) = n(n+ 1)/2.

– You can check the result using a simple for-loop.

6

• Can you check against a previous release? �is may be considered an instance of the previous item

if your previous release is correct(?).

• Is there a database with test-cases?

6 First JUnit Tests
�is section demonstrates how to implement simple unit tests using Java’s JUnit4 framework. As part of

this section we shall develop some unit tests for the following method, which contains some deliberate

errors. �roughout, the names of the identi�ers and coding style have been kept simple to keep the

examples short.

public class Largest {
public static int largest(int[] ints) {

int max = Integer.MAX_VALUE;
for (int i = 0; i < ints.length - 1; i ++) {

if (ints[i] > max) {
max = ints[i];

}
}
return max;

}
}

Java

�e following is a class called TestLargest which de�nes a unit test for the method largest. �e

@Test annotation indicates that the method following it is a method which should be called in isolation

as a unit test. As you can see from the example, you may specify more than one test. �e static import

statement is usually frowned upon. However, here it is used to avoid having to fully qualify all references to

the class Assert. In short, it allows you to write ‘assertEquals(…)’ instead of ‘Assert.assertEquals(
…)’.

7

import static org.junit.Assert.*;
import org.junit.Test;

public class TestLargest {
@Test
public void orderTest() {

int[] ints = new int[] {7,6,8,9};
assertEquals(9, Largest.largest(ints));

}

@Test
public void success() {

// Simulate successful test.
}

}

Java

Before we can run the test we have to adjust and export the java CLASSPATH.
1

$ CLASSPATH=${CLASSPATH}:/usr/share/java/junit4.jar:.
$ export CLASSPATH

Unix Session

Next you can apply the test. Notice that this is done in isolation, i.e. without the need for a main.

$ javac Largest.java TestLargest.java
$ java java org.junit.runner.JUnitCore TestLargest
…

Time: 0.007
JUnit version 4.3.1
.E
Time: 0.009
There was 1 failure:
1) orderTest(TestLargest)
java.lang.AssertionError: expected:<9> but was:<2147483647>
…

FAILURES!!!
Tests run: 2, Failures: 1
$

Unix Session

It looks as if we’ve just found a bug. On closer inspection we notice that the assignment ‘int max =

1
It is probably a good idea to add the assignment to the CLASSPATH environment variable and the export statement to your

.bashrc �le.

8

Integer.MAX_VALUE’ should have been ‘int max = Integer.MIN_VALUE’.

$ javac Largest.java TestLargest.java
$ java java org.junit.runner.JUnitCore TestLargest
…

Time: 0.007
JUnit version 4.3.1
.E.
Time: 0.012
There was 1 failure:
1) orderTest(TestLargest)
java.lang.AssertionError: expected:<9> but was:<8>
…

FAILURES!!!
Tests run: 2, Failures: 1
$

Unix Session

Oops, it looks like we still haven’t got rid of all bugs yet.

�is time, �nding the bug takes slightly more time. To locate the bug, it helps noticing that the

method largest failed to �nd the maximum 9, which is the last member of the array. Interestingly, the

method did seem to be able to locate the maximum of the numbers before the 9. Errors like this are

usually caused by o�-by-one errors.

One more look at the method largest and we quickly see that the termination condition for the for
statement is wrong: it should have been ‘i <= ints.length + 1’ or (better) ‘i < ints.length’.

A�er �xing this embarrassing error we once more run our unit tests.

$ javac Largest.java TestLargest.java
$ java java org.junit.runner.JUnitCore TestLargest
…

JUnit version 4.3.1
..
Time: 0.011

OK (2 tests)
$

Unix Session

Whey! Looks like we’re out of trouble. But can we really be sure?

7 JUnit Assertions
�e following are some assertions which are provided by JUnit4.

• assertEquals(expected, actual) compares expected and actual and fails if the two are not

equal. Possible types for the arguments are boolean, int, short, ….

9

• assertEquals(expected, actual, tolerance) compares expected and actual and aborts if

they are not within the given tolerance tolerance. �is method is used for comparing �oating

point types.

• assertNull(object) asserts that object == null.

• assertNotNull(object) asserts that object != null.

• assertSame(expected, actual) asserts that object and actual are aliases.

• assertNotSame(expected, actual) asserts that object and actual are not aliases.

• assertTrue(condition) asserts that condition is true.

• assertFalse(condition) asserts that condition is false.

• fail() fails immediately.

All methods take an optional �rst String argument, which is output in case of failure:

assertEquals("Should be 3 1/3", 3.33, 10.0/3.0, 0.01); Java

8 Test Wrappers
Many tests require access to some resource which has to be set up (initialised) prior to the test and torn

down a�er the test. For example, the test may assume that it has a connection to a database. For the test

to work, the database connection has to be set up before the test and closed a�er the test.

To support this kind of functionality, the JUnit4 framework provides the following annotations:

@Before: �is annotation indicates the method that initialises the test.

@After: �is annotation indicates the method that tears down the test.

Figure 1 depicts an example. Note that this example is not about implementing meaningful unit tests but

to show the per-test set up and tear down mechanism.

$ javac TestBeforeAfter.java
$ java org.junit.runner.JUnitCore TestBeforeAfter
JUnit version 4.3.1
.Initialising
Tearing down. Value is: 4
.Initialising
Tearing down. Value is: 5

Time: 0.04

OK (2 tests)
$

Unix Session

10

import org.junit.Before;
import org.junit.After;
import org.junit.Test;

public class TestBeforeAfter {
private int value;

@Before
public void initialise() {

System.out.println("Initialising");
value = 1;

}

@Test
public void test1() {

value += 3;
}

@Test
public void test2() {

value += 4;
}

@After
public void tearDown() {

System.out.println("Tearing down. Value is: " + value);
}

}

Figure 1: Setting up and tearing down JUnit tests.

Notice that the output clearly shows that each test is individually set up and torn down.

9 Class Wrappers
As you may have guessed, per-class setting up and tearing down is also supported. �is mechanism is

useful for setting up and tearing down “expensive” resources, which take much time to initialise and/or

11

tear down.

To support this kind of functionality, the JUnit4 framework provides the following annotations:

@BeforeClass: �is annotation indicates the class method that initialises the test.

@AfterClass: �is annotation indicates the class method that tears down the test.

�e following is an example. Again, note that this example is not about implementing meaningful unit

tests but to show the per-class set up and tear down mechanism.

import org.junit.BeforeClass;
import org.junit.AfterClass;
import org.junit.Test;

public class TestBeforeAfterClass {
private static int value;

@BeforeClass
public static void initialiseClass() { value = 1; }

@Test public void test1() { value += 3; }
@Test public void test2() { value += 4; }

@AfterClass
public static void tearClassDown() {

System.out.println("Tearing down. Value is: " + value);
}

}

Java

$ javac TestBeforeAfterClass.java
$ java org.junit.runner.JUnitCore TestBeforeAfterClass

JUnit version 4.3.1
..Tearing down. Value is: 8

Time: 0.012

OK (2 tests)

$

Unix Session

12

10 Tests with Timeout
Many programs critically depend on time. For example, user interfaces should be responsive. Other

computations cannot take forever. Testing with a maximum computation makes sense.

• Catches errors due to slow response time;

• May catch in�nite loops;

• ….

�e JUnit4 framework allows you to specify a maximum computation time as part of the @Test
annotation. Speci�cally, the notation ‘@Test(timeout=〈ms〉)’ annotates a method as a test method with

a maximum computation time of ‘〈ms〉’ milliseconds. A test that takes more than its allowed speci�ed

timeout is considered a failed test.

�e following demonstrates how timeouts work.

import org.junit.Test;

public class TestTimeout {
@Test(timeout=10)
public void failure() {

for (int index = 0; ;) ;
}

@Test(timeout=1)
public void success() {
}

}

Java

$ javac TestTimeout.java
$ java org.junit.runner.JUnitCore TestTimeout
JUnit version 4.3.1
.E.
Time: 0.04
There was 1 failure:
1) failure(TestTimeout)
java.lang.Exception: test timed out after 10 milliseconds
...

FAILURES!!!
Tests run: 2, Failures: 1
$

Unix Session

13

11 Acknowledgements
�is lecture is based on [Furguson Smart, 2008, Chapter 10], [Hunt and �omas, 2007], and [Som-

merville, 2007, Chapter 23]. Further information about JUnit testing may be found at http://en.
wikipedia.org/wiki/Unit_test.

References
[Furguson Smart, 2008] John Furguson Smart. Java Power Tools. O’Reilly, 2008.

[Hunt and �omas, 2007] Andrew Hunt and David �omas. Pragmatic Unit Testing In Java with

JUnit. �e Pragmatic Programmers, 2007.

[Sommerville, 2007] Ian Sommerville. So�ware Engineering. Addison Wesley, 2007. Eight Edition.

12 For Monday
Study the notes and study Chapter 5.

14

http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Unit_test

	Introduction
	Assertions
	What is Unit Testing?
	Why Unit Testing?
	Concrete Unit Tests
	Are the Results RIGHT?
	Boundary Conditions
	Inverse Relationships
	Cross-checking

	First JUnit Tests
	JUnit Assertions
	Test Wrappers
	Class Wrappers
	Tests with Timeout
	Acknowledgements
	For Monday

